Каталог статей /

Вирусы :: Применение

Вирусы · Этимология названия · История исследований · Происхождение · Биология · Классификация · Роль в заболеваниях человека · Вирусные заболевания у других организмов · Роль вирусов в биосфере · Роль в эволюции · Применение · В массовой культуре · Близкие статьи ·


В науках о жизни и медицине

Учёный , изучающий вирус гриппа  H5N1
Учёный, изучающий вирус гриппа H5N1

Вирусы имеют важное значение для исследований в молекулярной и клеточной биологии, поскольку они представляют собой простые системы, которые можно использовать для управления и изучения функционирования клеток. Изучение и использование вирусов дало ценную информацию о различных аспектах клеточной биологии. К примеру, вирусы применялись в генетических исследованиях, и они помогли нам прийти к пониманию ключевых механизмов молекулярной генетики, как то: репликация ДНК, транскрипция, процессинг РНК, трансляция, транспорт белков.

Генетики зачастую используют вирусы как векторы для ввода генов в изучаемые клетки. Это даёт возможность заставить клетку производить чуждые вещества, и кроме этого изучить эффект от ввода нового гена в геном. Аналогично в виротерапии вирусы используют как векторы для лечения различных болезней, поскольку они избирательно действуют на клетки и ДНК. Это даёт надежды, что вирусы смогут помочь в борьбе с раком и найдут своё применение в генотерапии. Некоторое время восточноевропейские учёные прибегали к фаговой терапии как к альтернативе антибиотикам, и интерес к таким методам возрастает, поскольку сегодня у некоторых патогенных бактерий обнаружена высокая устойчивость к антибиотикам.

Биосинтез заражёнными клетками чужеродных белков лежит в основе некоторых современных промышленных способов получения белков, к примеру, антигенов. Не так давно промышленным способом были получены некоторые вирусные векторы и лекарственные белки, сегодня они проходят клинические и доклинические испытания.

В материаловедении и нанотехнологиях

Современные направления в нанотехнологиях обещают принести значительно более разностороннее применение вирусам. С точки зрения материаловедов, вирусы можно рассматривать как органические наночастицы. Их поверхность несёт специальные приспособления для преодоления биологических барьеров клетки-хозяина. Точно определены форма и размер вирусов, и кроме этого количество и природа функциональных групп на их поверхности. По существу, вирусы зачастую используют в материаловедении как «подмости» для ковалентно связанных поверхностных модификаций. Одно из примечательных качеств вирусов — то, что они специально «подогнаны» направленной эволюцией под клетки, выступающие хозяевами. Мощные методы, разработанные биологами, легли в основу инженерных приёмов в наноматериалах, открыв тем самым широкую сферу применения вирусов, выходящую далеко за пределы биологии и медицины.

Из-за своих размеров, формы и хорошо изученной химической структуры вирусы использовали как шаблоны для организации материалов на наноуровне. Примером такой недавней работы могут служить исследования, проведённые Исследовательской лабораторией Наваля в Вашингтоне (округ Колумбия) с использованием вируса мозаики коровьего гороха (англ. Cowpea Mosaic Virus (CPMV)) для усиления сигналов в сенсорах с ДНК-микрочипами. В данном случае вирусные частицы разделяли частицы флуоресцентных красителей, которые использовались для передачи сигнала, предотвращая, таким образом, скопление нефлуоресцентных димеров, выступающих как гасители сигнала. Другим примером использования CPMV является применение его как наноразмерного образца для молекулярной электроники.

Искусственные вирусы

Многие вирусы могут быть получены de novo, то есть с нуля, а первый искусственный вирус был получен в 2002 году. Несмотря на некоторые неправильные трактовки, помимо этого синтезируется не сам вирус как таковой, а его геномная ДНК (в случае ДНК-вирусов) или комплементарная копия ДНК его генома (в случае РНК-вирусов). У вирусов многих семейств искусственная ДНК или РНК (последняя получается путём обратной транскрипции синтетической комплементарной ДНК), будучи введённой в клетку, проявляет инфекционные свойства. Иными словами, они содержат всю необходимую информацию для образования новых вирусов. Эту технологию в настоящее время используют для разработки вакцин нового типа. Возможность создавать искусственные вирусы имеет далеко идущие последствия, поскольку вирус не может вымереть, пока известна его геномная последовательность и имеются чувствительные к нему клетки. В наши дни полные геномные последовательности 2408 различных вирусов (в том числе оспы) находятся в публичном доступе в онлайн-базе данных, поддерживаемой Национальными институтами здравоохранения США.

Вирусы как оружие

Есть другая статья: Биологическое оружие

Способность вирусов вызывать опустошительные эпидемии среди людей порождает беспокойство, что вирусы могут использоваться как Биологическое оружие. Дополнительные опасения вызвало успешное воссоздание вредоносного вируса испанского гриппа в лаборатории. Другим примером может служить вирус оспы. Он на всём протяжении истории опустошал множество стран вплоть до его окончательного искоренения. Официально образцы вируса оспы хранятся лишь в двух местах в мире — в двух лабораториях в России и США. Опасения, что он может быть использован как оружие, не совсем беспочвенны; вакцина против оспы в некоторых случаях имеет тяжёлые побочные эффекты — в последние годы до официально объявленного искоренения вируса больше людей серьёзно заболели из-за вакцины, чем от вируса, поэтому вакцинация против оспы больше не практикуется повсеместно. По этой причине большая часть современного населения Земли практически не имеет устойчивости к оспе.

Часть информации на сайте получена из открытых источников. Основа ВикипедиЯ. | Пожалуйста, внимательно прочитайте эту страницу! |