Каталог статей /

Обмен веществ :: Анаболизм

Обмен веществ · Биологические молекулы · Катаболизм · Энергетические превращения · Анаболизм · Ксенобиотики и окислительный метаболизм · Термодинамика живых организмов · Регуляция и контроль · Эволюция · Методы исследования · История · Близкие статьи ·


Подробное рассмотрение темы: Анаболизм

Анаболизм — совокупность метаболических процессов биосинтеза сложных молекул с затратой энергии. Сложные молекулы, входящие в состав клеточных структур, синтезируются последовательно из более простых предшественников. Анаболизм включает три основных этапа, каждый из которых катализируется специализированным ферментом. На первом этапе синтезируются молекулы-предшественники, к примеру, аминокислоты, моносахариды, терпеноиды и нуклеотиды. На втором этапе предшественники с затратой энергии АТР преобразуются в активированные формы. На третьем этапе активированные мономеры объединяются в более сложные молекулы, к примеру, белки, полисахариды, липиды и нуклеиновые кислоты.

Не все живые организмы могут синтезировать все биологически активные молекулы. Автотрофы (например, растения) могут синтезировать сложные органические молекулы из таких простых неорганических низкомолекулярных веществ, как углекислый газ и вода. Гетеротрофам необходим источник более сложных веществ, таких как моносахариды и аминокислоты, для создания более сложных молекул. Организмы классифицируют по их главным источникам энергии: фотоавтотрофы и фотогетеротрофы получают энергию из солнечного света, в то время как хемоавтотрофы и хемогетеротрофы получают энергию из неорганических реакций окисления.

Связывание углерода

Подробное рассмотрение темы: Фотосинтез и Хемосинтез
Растительные клетки содержат хлоропласты (зелёного цвета), в тилакоидах которых происходят процессы фотосинтеза.  Plagiomnium affine  из семейства  Mniaceae  отдела  Настоящие мхи  (  Bryophyta  )
Растительные клетки содержат хлоропласты (зелёного цвета), в тилакоидах которых происходят процессы фотосинтеза. Plagiomnium affine из семейства Mniaceae отдела Настоящие мхи (Bryophyta)

Фотосинтезом называют процесс биосинтеза сахаров из углекислого газа, при котором необходимая энергия поглощается из солнечного света. У растений, цианобактерий и водорослей, при кислородном фотосинтезе происходит фотолиз воды, помимо этого, как побочный продукт, выделяется кислород. Для преобразования CO2 в 3-фосфоглицерат используется энергия АТФ и НАДФ, запасенная в фотосистемах. Реакция связывания углерода осуществляется с помощью фермента рибулозобисфосфаткарбоксилазы и является частью цикла Кальвина. У растений классифицируют три типа фотосинтеза — по пути трехуглеродых молекул, по пути четырехуглеродых молекул (С4), и CAM фотосинтез. Три типа фотосинтеза отличаются по пути связывания углекислого газа и его вхождения в цикл Кальвина; у C3 растений связывание CO2 происходит непосредственно в цикле Кальвина, а при С4 и CAM CO2 предварительно включается в состав других соединений. Разные формы фотосинтеза являются приспособлениями к к интенсивному потоку солнечных лучей и к сухим условиям.

У фотосинтезирующих прокариот механизмы связывания углерода более разнообразны. Углекислый газ может быть фиксирован в цикле Кальвина, в обратном цикле Кребса, или в реакциях карбоксилирования ацетил-КоА. Прокариоты — хемоавтотрофы также связывают CO2 через цикл Кальвина, но для протекания реакции используют энергию из неорганических соединений.

Углеводы и гликаны

Подробное рассмотрение темы: Глюконеогенез и Гликозилирование

В процессе анаболизма сахаров простые органические кислоты могут быть преобразованы в моносахариды, например, в глюкозу, и после использованы для синтеза полисахаридов, таких как крахмал. Образование глюкозы из соединений, как пируват, лактат, глицерин, 3-фосфоглицерат и аминокислот называют глюконеогенезом. В процессе глюконеогенеза пируват превращается глюкозо-6-фосфат через ряд промежуточных соединений, многие из которых образуются и при гликолизе. В тоже время, глюконеогенез не просто является гликолизом в обратном направлении, поскольку несколько химических реакций катализируют специальные ферменты, что дает возможность независимо регулировать процессы образования и распада глюкозы.

Многие организмы запасают питательные вещества в форме липидов и жиров, в тоже время, позвоночные не имеют ферментов, катализирующих превращение ацетил-КоА (продукта метаболизма жирных кислот) в пируват (субстрат глюконеогенеза). После длительного голодания позвоночные начинают синтезировать кетоновые тела из жирных кислот, которые могут заменять глюкозу в таких тканях, как головной мозг. У растений и бактерий, данная метаболическая проблема решается использованием глиоксилатного цикла, который обходит этап декарбоксилирования в цикле лимонной кислоты и даёт возможность превращать ацетил-КоА в оксалоацетат, и далее использовать для синтеза глюкозы.

Полисахариды выполняют структурные и метаболические функции, и кроме этого могут быть соединены с липидами (гликолипиды) и белками (гликопротеиды) при помощи ферментов олигосахаридтрансфераз.

Жирные кислоты, изопреноиды и стероиды

Подробное рассмотрение темы: Стероиды
Синтез стероидов из изопентилпирофосфата, диметилаллилпирофосфата, геранилпирофосфата и  сквалена . Некоторые промежуточные продукты не показаны
Синтез стероидов из изопентилпирофосфата, диметилаллилпирофосфата, геранилпирофосфата и сквалена. Некоторые промежуточные продукты не показаны

Жирные кислоты образуются синтазами жирных кислот из ацетил-КоА. Углеродный скелет жирных кислот удлиняется в цикле реакций, в которых сначала присоединяется ацетильная группа, далее карбонильная группа восстанавливается до гидроксильной, после происходит дегидратация и последующее восстановление. Ферменты биосинтеза жирных кислот классифицируют на две группы: у животных и грибов все реакции синтеза жирных кислот осуществляются одним многофункциональным белком I типа, в пластидах растений и у бактерий каждый этап катализируют отдельные ферменты II типа.

Терпены и терпеноиды являются представителями самого многочисленного класса растительных натуральных продуктов. Представители данной группы веществ являются производными изопрена и образуются из активированных предшественников изопентилпирофосфата и диметилаллилпирофосфата, которые, в свою очередь, образуются в разных реакциях обмена веществ. У животных и архей изопентилпирофосфат и диметилаллилпирофосфат синтезируются из ацетил-КоА в мевалонатном пути, в то время как у растений и бактерий субстратами не-мевалонатного пути являются пируват и глицеральдегид-3-фосфат. В реакциях биосинтеза стероидов молекулы изопрена объединяются и образуют сквалены, которые далее формируют циклические структуры с образованием ланостерола. Ланостерол может быть преобразован в другие стероиды, например холестерин и эргостерин.

Белки

Подробное рассмотрение темы: Биосинтез белка

Организмы различаются по способности к синтезу 20 общих аминокислот. Большая часть бактерий и растений могут синтезировать все 20, но млекопитающие способны синтезировать лишь 11 заменимых аминокислот. Таким образом, в случае млекопитающих 9 незаменимых аминокислот обязаны быть получены из пищи. Все аминокислоты синтезируются из промежуточных продуктов гликолиза, цикла лимонной кислоты или пентозомонофосфатного пути. Перенос аминогрупп с аминокислот на альфа-кетокислоты называется трансаминированием. Донорами аминогрупп являются глутамат и глутамин.

Аминокислоты, соединенными пептидными связями, образуют белки. Каждый белок имеет уникальную последовательность аминокислотных остатков (первичная структура белка). Подобно тому, как буквы алфавита могут комбинироваться с образованием почти бесконечных вариаций слов, аминокислоты могут связываться в той или иной последовательности и формировать разнообразные белки. Фермент Аминоацил-тРНК-синтетаза катализирует АТР-зависимое присоединение аминокислот к тРНК сложноэфирными связями, помимо этого образуются аминоацил-тРНК. Аминоацил-тРНК являются субстратами для рибосом, которая объединяют аминокислоты в длинные полипептидные цепочки, используя матрицу мРНК.

Нуклеотиды

Подробное рассмотрение темы: Пурин, пиримидин

нуклеотиды образуются из аминокислот, углекислого газа и муравьиной кислоты в цепи реакций, для протекания которых требуется множество энергии. Именно поэтому большая часть организмов имеют эффективные системы сохранения ранее синтезированных нуклеотидов и азотистых оснований. Пурины синтезируются как нуклеозиды (в основном связанные с рибозой). Аденин и гуанин образуются из инозин-монофосфата, который синтезируется из глицина, глутамина и аспартата при участии метенил-тетрагидрофолата. Пиримидины синтезируются из оротата, который образуется из глутамина и аспартата.

Часть информации на сайте получена из открытых источников. Основа ВикипедиЯ. | Пожалуйста, внимательно прочитайте эту страницу! |